Langsung ke konten utama

Cause and Effect of Chemical Reaction


What is Acid Rain?
Acid rain refers to a mixture of deposited material, both wet and dry, coming from the atmosphere containing more than normal amounts of nitric and sulfuric acids. Simply put, it means rain that is acidic in nature due to the presence of certain pollutans in the air  due to cars and industrial processes. It is easily defined as rain, fog, sleet or snow that has been made acidic by pollutants in the air as a result of fossil fuel and industrial combustions that mostly emits Nitrogen Oxides (NOx) and Sulfur Dioxide (SO2). Acidity is determined on the basis of the pH level of the water droplets. Normal rain water is slightly acidic with a pH range of 5.3-6.0, because carbon dioxide and water present in the air react together to form carbonic acid, which is a weak acid. When the pH level of rain water falls below this range, it becomes acid rain.
When these gases react with water molecules and oxygen among other chemicals found in the atmosphere, mild acidic chemical compounds such as sulfuric and nitric acid are formed resulting to acid rain. Acid rain generally leads to weathering of buildings, corrosion of metals, and peeling of paints on surfaces. Erupting volcanoes contains some chemicals that can cause acid rain. Apart from this, burning of fossil fuels, running of  factories and automobiles due to human activities are few other reasons behind this activity.

Presently, large amounts of acid deposition is witnessed in the southeastern Canada, northeastern United States and most of Europe, including portions of Sweden, Norway, and Germany. In addition, some amount of acid deposition is found in parts of South Asia, South Africa, Sri Lanka, and Southern India.

Forms of Acid Rain
There are two forms in which acid deposition occurs – wet and dry. Both are discussed below:
  • Wet Deposition: When the wind blows the acidic chemicals in the air to the areas where the weather is wet, the acids fall to the ground in the form of rain, sleet, fog, snow or mist. It removes acid from the atmosphere and deposit them on the earth’s surface. When this acid flows through the ground, it affects large number of plants, animals and aquatic life. The water from drain flows into rivers and canals which is them mixed up with sea water, thereby affecting marine habitats.
  • Dry Deposition: If the wind blows the acidic chemicals in the air to the areas where the weather is dry, the acidic pollutants slip into dust or smoke and fall to the ground as dry particles. These stick to the ground and other surfaces such as cars, houses, trees and buildings. Almost 50% of the acidic pollutants in the atmosphere fall back through dry deposition. These acidic pollutants can be washed away from earth surface by rainstorms.
It was discovered way back in 1800s during the Industrial Revolution. A Scottish chemist, Robert Angus Smith, was first to discover this phenomenon in 1852 as a relationship between acid rain and atmospheric pollution in Manchester, England. But it gained public attention mainly in 1960s. The term was coined in 1972 when the NY Times published reports about the climate change effects which started arising due to the occurrence of acid rain in the Hubbard Brook Experimental Forest in New Hampshire.

Causes of Acid Rain
Both natural and man-made sources are known to play a role in the formation of acid rain. But, it is mainly caused by combustion of fossil fuels which results in emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx).
1. Natural Sources
The major naNtural causal agent for acid rain is volcanic emissions. Volcanoes emit acid producing gases to create higher than normal amounts of acid rain or any other form of precipitation such as fog and snow to an extent of affecting vegetation cover and health of residents within the surrounding. Decaying vegetation, wildfires and biological processes within the environment also generate the acid rain forming gases. Dimethly sulfide is a typical example of a major biological contributor to sulfur containing elements into the atmosphere. Lighting strikes also naturally produces nitric oxides that react with water molecules via electrical activity to produce nitric acid, thereby forming acid rain.

2. Man-made sources
Human activities leading to chemical gas emissions such as sulfur and nitrogen are the primary contributors to acid rain. The activities include air pollution sources emitting sulfur and nitrogen gases like factories, power generations facilities, and automobiles. In particular, use of coal for electrical power generation is the biggest contributor to gaseous emissions leading to acid rain. Automobiles and factories also release high scores of gaseous emissions on daily basis into the air, especially in highly industrialized areas and urban regions with large numbers of car traffic. These gases react in the atmosphere with water, oxygen, and other chemicals to form various acidic compounds such as sulfuric acid, ammonium nitrate, and nitric acid. As a result, these areas experience exceedingly high amounts of acid rain.
The existing winds blow these acidic compounds over large areas across borders and they fall back to the ground in the form of acid rain or other forms of precipitation. Upon reaching the earth, it flows across the surface, absorbs into the soil and enters into lakes and rivers and finally gets mixed up with sea water.
The gases i.e. i.e. sulfur dioxide (SO2) and nitrogen oxides (NOx) are primarily gases occurring from electric power generation by burning coal and responsible for acid rain.


Effects of Acid Rain
  • Effect on Aquatic Environment: Acid rain either falls directly on aquatic bodies or gets run off the forests, roads and fields to flow into streams, rivers and lakes. Over a period of time, acids get accumulated in the water and lower the overall pH of the water body. The aquatic plants and animals need a particular pH level of about 4.8 to survive. If the pH level falls below that the conditions become hostile for the survival of aquatic life. Acid rain tendency of altering pH and aluminum concentrations greatly affects pH concentration levels in surface water, thereby affecting fish as well as other aquatic life-forms. At pH levels below 5, most fish eggs cannot hatch. Lower pHs can also kill adult fish. Acid rain runoff from catchment areas into rivers and lakes has also reduced biodiversity as rivers and lakes become more acidic. Species including fish, plant and insect types in some lakes, rivers and brooks have been reduced and some even completely eliminated owing to excess acid rain flowing into the waters.
  • Effect on Forests: It makes trees vulnerable to disease, extreme weather, and insects by destroying their leaves, damaging the bark and arresting their growth. Forest damage due to acid rain is most evident in Eastern Europe – especially Germany, Poland and Switzerland.
  • Effect on Soil: Acid rain highly impacts on soil chemistry and biology. It means, soil microbes and biological activity as well as soil chemical compositions such as soil pH are damaged or reversed due to the effects of acid rain. The soil needs to maintain an optimum pH level for the continuity of biological activity. When acid rains seep into the soil, it means higher soil pH, which damages or reverses soil biological and chemical activities. Hence, sensitive soil microorganisms that cannot adapt to changes in pH are killed. High soil acidity also denatures enzymes for the soil microbes. On the same breadth, hydrogen ions of acid rain leach away vital minerals and nutrients such as calcium and magnesium.
  • Vegetation Cover and Plantations: The damaging effects of acid rain on soil and high levels of dry depositions have endlessly damaged high altitude forests and vegetation cover since they are mostly encircled by acidic fogs and clouds. Besides, the widespread effects of acid rain on ecological harmony have lead to stunted growth and even death of some forests and vegetation cover.
  • Effect on Architecture and Buildings: Acid rain on buildings, especially those constructed with limestone, react with the minerals and corrode them away. This leaves the building weak and susceptible to decay. Modern buildings, cars, airplanes, steel bridges and pipes are all affected by acid rain. Irreplaceable damage can be caused to the old heritage buildings.
  • Effect on Public Health: When in atmosphere, sulfur dioxide and nitrogen oxide gases and their particulate matter derivatives like sulfates and nitrates, degrades visibility and can cause accidents, leading to injuries and deaths. Human health is not directly affected by acid rain because acid rain water is too dilute to cause serious health problems. However, the dry depositions also known as gaseous particulates in the air which in this case are nitrogen oxides and sulfur dioxide can cause serious health problems when inhaled. Intensified levels of acid depositions in dry form in the air can cause lung and heart problems such as bronchitis and asthma.
  • Other Effects: Acid rain leads to weathering of buildings, corrosion of metals, and peeling of paints on surfaces. Buildings and structures made of marble and limestone are the ones especially damaged by acid rain due to the reactivity of the acids in the rain and the calcium compounds in the structures. The effects are commonly seen on statues, old grave stones, historic monuments, and damaged buildings. Acid rain also corrodes metals like steel, bronze, copper, and iron.


Solutions to Acid Rain
  1. Cleaning up Exhaust Pipes and Smokestacks
Most of the electric power supporting the modern-day energy requirements comes from combusting fossil fuels such as oil, natural gas, and coal that generate nitrogen oxides (NOx) and sulfur dioxide (SO2) as the chief contributors to acid rain. Burning coal largely accounts for SO2 emissions while NOx emissions are mostly from fossil fuel combustions.
Washing coal, use of coal comprised of low sulfur, and use of devices known as “scrubbers” can provide technical solution to SO2 emissions. “Scrubbing” also called flue-gas desulfurization (FGD) typically work to chemically eliminate SO2 from the gases leaving smokestacks. It can eliminate up to 95% of SO2 gases. Power generation facilities can also shift to using fuels that emit much less SO2 such as natural gas instead of burning coal. These methods are simply called emission reduction strategies.
Similarly, NOx emissions from automobile fossil fuel combustions are mitigated upon by use of catalytic converters. Catalytic converters are fixed on the exhaust pipe system to reduce NOx emission. Improvement of gasoline that combusts cleaner is also a strategy for reducing emission of NOx gases.
  1. Restoring Damaged Environments
Use of limestone or lime, a process called liming, is a practice that people can do to repair the damage caused by acid rain to lakes, rivers and brooks. Adding lime into acidic surface waters balances the acidity. It’s a process that has extensively been used, for instance in Sweden, to keep the water pH at optimum. Even though, liming is an expensive method and has to be done repeatedly. Furthermore, it only offers a short-term solution at the expense of solving the broader challenges of SO2 and NOx emissions and risks to human health. Nevertheless, it helps to restore and allow the survival of aquatic life forms by improving chronically acidified surface waters.
Alternative Energy Sources
Besides fossil fuels, there is a wide range of alternative energy sources that can generate electrical power. These include wind energy, geothermal energy, solar energy, hydropower, and nuclear power. Harnessing these energy sources can offer effective electrical power alternatives instead of using fossil fuels. Fuel cells, natural gas, and batteries can also substitute use of fossil fuel as cleaner energy sources. As of today, all energy sources have environmental and economic costs as well as benefits. The only solution is using sustainable energy that can protect the future.
  1. Individual, National/State, and International Actions
Millions of people directly and indirectly contribute to SO2 and NOx emissions. Mitigation of this challenge requires individuals to be more informed about energy conservation and ways of reducing emissions such as: turning off lights or electrical appliances when not using them; use public transport; use energy efficient electrical appliances; and use of hybrid vehicles or those with low NOx emissions.

Komentar

  1. Hiii mute, , how are you today? I'm Novi, , want to ask you,What is the level of acid rain in Indonesia? And I live in the factory area, how do we prevent to avoid the effects of acid rain especially in terms of health?

    BalasHapus
    Balasan
    1. Acid deposition has already occurred in several Indonesian cities with the pH (acidity) levels of rain water falling on them over the past five years recorded at between 4.6 and 5.3, an environmental officer said.
      • Acid rain can be prevented by saving energy, using less transportation, and switching to alternative energy sources. Reducing fossil fuel consumption stops acid rain before it begins

      Hapus
  2. why always Acid rain?,why this rain only contain acid?,why we didnt call it bases or alkaline acid?

    BalasHapus
    Balasan
    1. Because conceptually, it could happen. For example in a region where the air is clean. Then exposed by ammonia vapor from chemical plant. If this ammonia vapor mixes with raindrop, will form base NH4OH. Whereas practically, generally the air condition where it is currently polluted by the smoke of vehicles and factories containing acid oxides. Such as NO2, SO2, CO2 and so on, where the klo oxide meets the water will form the acid. That is why, generally known to happen is acid rain.

      Hapus
  3. Is there possibly positive effect of acid rain?

    BalasHapus
    Balasan
    1. It has recently come to the attention of the science community that acid rain may have a positive impact on humans and the environment.

      As a rule, carbon dioxide and methane contribute significantly to what is considered global warming. However, the sulfur dioxide in acid rain suppresses some portion of methane production in the atmosphere. Methane results from bacteria breaking down organic compounds, and the sulfur in acid rain appears to suppress up to 30 or 40% of methane production in wetlands areas. For example, tests by NASA's Goddard Space Flight Center show that the sulfur in acid rain will continue to suppress methane production until at least 2030.

      Other studies have shown that a rise in temperature, along with greater concentrations of nitrogen in the atmosphere, can contribute to higher growth in forests. For example, the nitrogen in acid rain allows the trees to store more carbon. This process is called carbon sequestration and is quite beneficial: higher carbon reserves allow a tree to produce the optimum level of sugars and carbohydrates necessary for growth. The National Institute for Climatic Change Research's Midwestern Regional Center has performed studies concluding that acid rain can contribute to forest growth.

      Hapus
  4. it is possible to stop acid rain?

    BalasHapus
    Balasan
    1. Maybe if we can reduce it.
      Since energy production creates large amounts of the pollutants that cause acid rain, one important step you can take is to conserve energy. You can do this in a number of ways:

      • Turn off lights, computers, televisions, video games, and other electrical equipment when you're not using them.
      • Encourage your parents to buy equipment that uses less electricity, including lights, air conditioners, heaters, refrigerators, and washing machines. • • • Such equipment might have the Energy Star label.
      Try to limit the use of air conditioning.
      Ask your parents to adjust the thermostat (the device used to control the temperature in your home) when you go on vacation.

      Driving cars and trucks also produces large amounts of nitrogen oxides, which cause acid rain. To help cut down on air pollution from cars, you can carpool or take public transportation, such as buses and trains. Also, ask your parents to walk or bike with you to a nearby store or friend’s house instead of driving.

      Hapus
  5. What the imfect acid rain for us?

    BalasHapus
    Balasan
    1. Acid rain comes from the pollution of the air with sulphur dioxide and nitrogen oxides when we burn coal, oil and gas in power stations to generate electricity or drive our cars. Acid rain can be harmful to the environment, including wildlife, trees and lakes, and can damage buildings. Acid rain affects countries far away from the source of the air pollution. Sweden and Norway for example, receive a lot of acid rain because of air pollution

      Hapus

  6. Hi mutia. what the effect of acid rain for our life?

    BalasHapus
    Balasan
    1. Walking in acid rain, or even swimming in a lake affected by acid rain, is no more dangerous to humans than walking in normal rain or swimming in non-acidic lakes. However, when the pollutants that cause acid rain —SO2 and NOX, as well assulfate and nitrate particles— are in the air, they can be harmful to humans.
      SO2 and NOX react in the atmosphere to form fine sulfate and nitrate particles that people can inhale into their lungs. Many scientific studies have shown a relationship between these particles and effects on heart and lung function, such as asthma and bronchitis.

      Hapus

Posting Komentar

Postingan populer dari blog ini

Chemistry Video: Endothermic and Exothermic Reactions

    Excited but bit confused, Sam and Julie run to their chemistry teacher. Sam asks, “Teacher, why did my flask turn cold after adding the salt to water, while Julie’s flask turned hot?” The teacher replies: “That’s because you were given two different salt. One of your salts generated an endothermic reaction with water, while the other salt generated an exothermic reaction with water. Let me first reveal the identity of your salts: Salt A is ammonium nitrate (NH4NO3NH4NO3 N, H, 4, N, O, 3 ) and Salt B is calcium chloride (CaCl2CaCl2 C, a, C, l, 2 )." Now, Sam and Julie are curious about the difference between an endothermic and an exothermic reaction. Consider the reaction mixture—salt plus water—as the system and the flask as the surrounding . In Sam’s case, when ammonium nitrate was dissolved in water, the system absorbed heat from the surrounding , the flask, and thus the flask felt cold. This is an example of an endothermic reaction. In Julie’s case,

Using English to Predict rendement of product a reaction

Predicting Reaction Products When cooking, it's frequently handy to predict what will happen when we mix a bunch of ingredients together. For example, if we're interested in making a delicious new salad dressing, we would have a very small chance of making anything edible if we had no way of knowing which ingredients would have the greatest chance of succeeding. Likewise, it's often necessary for chemists to predict the chemical reactions that will take place when two chemicals are combined. For example, if we're adding a chemical to a tank of toxic waste to stabilize it, we'd be very unhappy if we failed to predict an explosive reaction. The Mole Says The tips in this section, while helping you to figure out what reaction might occur, aren't infallible in correctly predicting the reaction that will take place. However, if you're not sure what will happen, these tips will be useful in suggesting some possibilities. An easy way to predict

Using English to Give Evidence

Chemistry Within Us Chemistry plays a vital role in our survival, and life without chemicals can't even be imagined. They participate in the primary functions of the body, control our emotions, oversee the metabolic processes and keep diseases at bay. The oxygen that we breathe, the essential nutrients that we require, the genetic make-up of our body - the DNA and RNA - are all made up of different elements and compounds. Let us take a look at few such instances that involve chemistry, and are an integral part of our existence.     Composition of the Human Body Roughly 96% of our body mass is made up of just 4 elements:- Oxygen, Carbon, Hydrogen and Nitrogen. The remaining 4% consists of around 60 elements that include sodium, potassium, calcium, zinc, and the list goes on. The elements that are required in larger amounts are called macro-nutrients and the others that are needed in minute quantities, usually in parts per million or less, are called micro-nutrients.